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Abstract. We consider the Higgssector in the low energy limit of the minimal nonlinear supersymmetric
SU(5) model. We estimate radiative corrections to the Higgs masses using the effective potential. Further-
more Higgs boson decays are investigated and differences to the MSSM are discussed.

1 Introduction

Supersymmetric models have been with us for more than
twenty years. Almost all of these models are linear super-
symmetric models, i.e. supersymmetry (SUSY) is realized
linearly. Linear SUSY models require a SUSY partner to
every conventional particle. Search for SUSY particles is
one of the main goals of the present and future collider
experiments. So far no SUSY partners have been found.
However SUSY may well be realized nonlinearly [1]. A
characteristic property of the nonlinear realization is that
no SUSY partners are required. In global nonlinear SUSY
models the only additional field that has to be introduced
is the Akulov-Volkov field (A-V field), a goldstino. But in
experiment no goldstino has been observed [2]. A possi-
bility to avoid the massless physical goldstino is to go to
curved space, to supergravity. The formalism for extend-
ing the standard model in a nonlinearly supersymmetric
way in curved space was developed by Samuel and Wess
[3]. In supergravity the goldstino can be gauged away;
the massless gravitino absorbs the goldstino and becomes
massive, whereas the graviton remains massless [4]. In the
limit of flat space, where the supergravity multiplet de-
couples from the ordinary matter, the fermion particle
spectrum is the same as in the standard model. The only
reminiscence of SUSY manifests itself in the Higgs sec-
tor. The Higgs sector has to be extended as in the case
of linear SUSY models. Minimal nonlinear SUSY stan-
dard model [5] contains two Higgs doublets and a Higgs
singlet and is a nonlinear SUSY alternative to the linear
SUSY model, the Next-to-Minimal Supersymmetric Stan-
dard Model (NMSSM) [6]. It has been shown that there
are typical differences in the structure of the Higgs poten-
tial between these two models. Physical consequences of
this nonlinear SUSY standard model in the flat space limit
were investigated, in particular, how to test the model
at future e+e−-colliders [7,8]. In the meantime we also
constructed a minimal nonlinear SUSY SU(5) model [9].
It turned out that the Higgs sector of this model at low

energies is determined by two Higgs doublets, resembling
that of the linear minimal SUSY standard model (MSSM).
In a recent article [10] we derived the low energy tree
level Higgs potential of this nonlinear SUSY SU(5) model,
mass eigenstates and mass relations and compared them
to those of the MSSM and discussed how to distinguish
between the two models. We also investigated Higgs par-
ticle production at e+e− linear colliders. In this note we
consider contributions of radiative corrections using one-
loop effective potential to the processes discussed in the
earlier paper [10]. Further we investigate decays of Higgs
particles and work out differences to MSSM.

2 The one-loop effective potential

The tree level Higgs potential in the low energy limit was
derived in [10] and reads as follows
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where g1, g2 and g3 are the coupling constants of U(1),
SU(2) and SU(3) respectively, m1, m2, m3 are mass pa-
rameters of electroweak scale and λ is a dimensionless self
coupling.

We will now consider the effects of one-loop radiative
corrections to the low energy theory. In this paper we only
consider the contributions of the top and bottom quarks,
which are the dominant contributions. The relevant in-
teraction terms are given by the Yukawa part of the low
energy Lagrange density
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We obtain the following result for the neutral part of the
effective potential [11]:
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with µ being the mass parameter of dimensional regular-
isation.

2.1 Mass spectra at one loop level

The extremum conditions

〈∂Veff/∂v1〉0 = 0, 〈∂Veff/∂v2〉0 = 0

yield the relations
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where we have abbreviated the logarithmic terms from Veff
with
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The scalar and pseudoscalar mass matrices are given by

M2
η ij

=
〈

∂2Veff

∂ηi∂ηj

〉
0

(7)

m=1000 GeV, µ=1000 GeV

λ

M
as

s 
(G

eV
)

tree

eff

tree

eff

tanβ = 1

tanβ = 15

MS1 (GeV)

0

20

40

60

80

100

120

140

160

180

0 0.2 0.4 0.6 0.8 1

Fig. 1. mS1, tree and mS1, eff at m = µ = 1000 GeV, tan β =
1(15), mt = 175GeV and mb = 4.3GeV
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The mass eigenstates and mixing angles follow from
these mass matrices. The expressions for the neutral scalar
masses mS1,eff , mS2,eff and the mixing angles are lengthy
and we do not present them here. However the mass of the
physical pseudoscalar mP,eff is given by the simple form

mP =
2
5
λ2v2 + m2 + L′

1v
2
2 + L′

2v
2
1 (9)

In order to illustrate the contribution of radiative cor-
rections we plot mS1,eff , mS1,tree and mP,eff for the param-
eter values m = 1000 GeV, µ = 1000 GeV, mt = 175 GeV
and mb = 4.3 GeV in Figs. 1–2.
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Fig. 2. mP, eff at m = µ = 1000 GeV, tan β = 1(15), mt =
175GeV and mb = 4.3GeV

The best place, where the importance of radiative cor-
rections manifests itself is the point tanβ = 1, λ = 0;
at this point the lighter scalar mass mS1 vanishes at tree
level

mS1,tree(tanβ = 1, λ = 0) = 0.

Figure 3 shows that radiative correction generally removes
this state of massless S1. The pseudoscalar mass mP is
independent of tanβ at tree level, but slightly dependent
on tanβ with radiative correction as can be seem from
Fig. 2.

3 Bounds on the lightest scalar mass

In experimental searches for Higgs particles it is very im-
portant to know theoretical upper and lower bounds for
their masses.

The upper bound of mS1 at tree level was given in [10].
An upper bound of 0.7 on λ can be determined through
RGE analysis by demanding that λ does not develop a
Landau pole up to GUT scale [12]. Thus we obtain at tree
level

0 . mS1,tree . 110 GeV. (10)

In order to obtain the bounds at one loop level we
systematically scan the parameter space and vary µ from
245 GeV to 1000 GeV.

As can be seen from Fig. 3 the minimum occurs at
λ = 0, tanβ = 1 and µ = 245 GeV and is about 28 GeV.
It is almost independent of m.

The maximum of mS1 for fixed values of m and µ oc-
curs for tanβ = 1 and maximal λ as can be expected from
Fig. 1. Figure 4 shows mS1 in the µ−m-plane for tanβ = 1
and λ = 0.7. The absolute maximum of mS1 occurs at
tanβ = 1, λ = 0.7, µ = 1000 GeV and m & 300 GeV.
Thus we obtain at one loop level

28 GeV ≤ mS1 ≤ 119 GeV. (11)
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Fig. 3. mS1, eff for tan β = 1, λ = 0 and µ = 245(1000)GeV

Fig. 4. mS1, eff for λ = 0.7 and tan β = 1

4 Production of Higgs bosons at e+e−

colliders

We will now investigate the production of Higgs bosons in
e+e− reactions using the effective potential and compare
the results to the tree level results we obtained in our
previous article [10]. We will concentrate on the reaction

e+e− −→ Z∗
0 , γ∗ −→ Sibb̄ (12)

because the production of b quarks is dominant below the
top threshold.

There are four reaction channels that contribute to the
cross section:

(i) e+e− → Z → ZSi → f̄fSi

(ii) e+e− → Z → f̄f → f̄fSi

(iii) e+e− → Z → PSi → f̄fSi

(iv) e+e− → γ → f̄f → f̄fSi. (13)

At higher center of mass energies
√

s ≥ 500 GeV the chan-
nels with virtual photon exchange become comparable to
those with Z∗

0 exchange, but are negligible at LEP ener-
gies.
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Fig. 6a,b. mS1, eff (dashed line) and σ1 (solid line) for λ = 0.2,
m = 200GeV, µ = 500GeV: a

√
s = 92GeV, b

√
s = 192GeV

In [10] we used tan β, mS1 and mP as parameters. In
the present case it is more convenient to take tan β, λ and
m as independent parameters.

In order to illustrate the effect of radiative corrections
on the cross section σ, we plot σ and mS1 as functions of
tanβ for λ = 0.2, m = 200 GeV at tree level in Fig. 5a(5b)
and for λ = 0.2, m = 200 GeV, µ = 200 GeV at one-loop
level in Fig. 6a (6b) for

√
s = 92 GeV (192 GeV). These

figures show that radiative contributions are rather large
in the region of small tanβ, more significant for

√
s =

92 GeV than for
√

s = 192 GeV.
However it turns out that they do not significantly

affect the region of mS1 which may be explored by the
e+e−-colliders, as we will discuss in the following.

First we analyze the LEP1 data. The discovery limit is
1pb [14,13]. We scanned the parameter space by consider-
ing m from 80 GeV to 1000 GeV and varying µ from 245
GeV to 1000 GeV. A systematic trend is that at a given
point in the tanβ-λ-plane σ1 decreases, whereas mS1 in-
creases compared to their respective tree level values. This
trend strongly depends on µ, but only smoothly on m.
Figs. 7-8 (µ = 245 GeV) show that the line of σ1 = 1 pb
and the line of mS1 = 38 GeV move with m, but the
change of their relative position remains negligible small.
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Fig. 7. σ1 (solid line) and mS1 (dashed line) at one-loop level
for

√
s = 92GeV, µ = 245GeV and m=80 GeV. The region of

σ1 ≥ 1fb is shaded
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Fig. 8. σ1 (solid line) and mS1 (dashed line) at one-loop level
for

√
s = 92GeV, µ = 245GeV and m=500 GeV. The region

of σ1 ≥ 1fb is shaded

The largest mS1 line which is entirely inside the region
of σ1 ≥ 1 pb is slightly higher than 38 GeV, whereas at
the tree level case it is slightly lower than 38 GeV. The
difference is smaller than 1 GeV.

For increasing µ the change of mS1 and σ1 compared
to their tree level values gets more pronounced as shown
in Fig. 9. Nevertheless the analysis shows that the relative
position of the contour lines for σ1 = 1pb and for mS1 =
38 GeV is not changed by varying µ.

In summary we conclude that the LEP1 data, if inter-
preted in the frame of the one-loop effective potential of
our model, yield almost the same experimental lower limit
(less than 1 GeV difference) on mS1 as in the tree level
case, namely about 38 GeV.

We did similar calculations for LEP2, LC-500, LC-
1000, LC-2000 and fount the contributions of the radiative
corrections in term of the one-loop effective potential to
be less than 5%.
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5 Higgs couplings and decays

We now turn to the investigation of decays of the Higgs
bosons. The results obtained in this section are based
mainly on tree level calculations. Besides the two-body de-
cay channels we also included the most important three-
body decays channels in the analysis. We only included
three-body decays when they had significant branching
ratios and the corresponding two-body decay was kine-
matically forbidden in the whole parameter space.

Before we come to the actual investigation of the de-
cays we will discuss the couplings relevant for Higgs decays
as some general features of the Higgs decay pattern may
already be derived from the couplings.

5.1 Higgs couplings

The couplings of the neutral Higgs bosons S1, S2 and P
to fermion and gauge boson pairs are shown in Table 1
relative to the standard model values of

gΦSM ff̄ =
g2mf

2mW

gΦSM V V =
g2m

2
V

mW
. (14)

The coupling of the charged Higgs boson H+ to fermions
is given by

gH+ud̄ =
g2

2
√

2mW

[(md tanβ + mu cot β)

+(md tanβ − mu cot β)γ5] . (15)

The couplings of two Higgs bosons to one gauge boson
are listed in Table 2. They are given relative to the values

gW =
g2

2
(p + p′)µ

gZ =
g2

2 cos θW
(p + p′)µ (16)

Table 1. Couplings of neutral Higgs bosons relative to SM
value

Φ gΦuū gΦdd̄ gΦV V

S1
cos α
sin β

− sin α
cos β

sin(β − α)
S2

sin α
sin β

cos α
cos β

cos(β − α)
P cot β tan β 0

Table 2. Normalized couplings of two Higgs to one gauge bo-
son

Φ gW ±H±Φ gZPΦ

S1 ∓ cos(α − β) cos(α − β)
S2 ∓ sin(α − β) sin(α − β)
P 1 0

where p (p’) is the incoming (outgoing) momentum of the
neutral (charged) Higgs boson.

Numerical results show that for m & 200 GeV the mass
of the lighter CP-even neutral Higgs boson S1 approaches
its maximum value for fixed tanβ and λ and the couplings
of S1 are approximately standard-model-like. In this re-
gion of parameter space | cos(α − β)| . 0.1 so that the
coupling of S2 to gauge boson pairs becomes relatively
small and furthermore the fermionic couplings of S2 ap-
proach that of the pseudoscalar Higgs boson P .

Finally the couplings S2S1S1 and S2PP are relevant
for Higgs decays. They are given by

gS2S1S1 = (17)
g2mZ

2 cos θW
[cos 2α cos(α + β) − 2 sin 2α sin(α + β)]

−4
5

λ2mW

g2
[2 cos 2α cos(α + β) − sin 2α sin(α + β)]

and

gS2PP =
g2mZ

2 cos θW
cos 2β cos(α + β) (18)

−4
5

λ2mW

g2
[cos(α + β) + cos 2β cos(α + β)] .

The couplings given in Tables 1 and 2 have the same
form as those in the MSSM [15]. The difference lies in the
mixing angle α which is given by a different expression in
our model. It is now possible for α to take such values that
some of the expressions in Table 1 and 2 and therefore the
corresponding couplings vanish.

The conditions for this decouplings are displayed in
Table 3 together with the corresponding conditions in the
MSSM. As opposed to the MSSM the decoupling is also
possible for tanβ 6= 1 in the nonlinear SU(5) model and
not only cos(α−β) but also sinα can vanish for tanβ 6= 1.

When sinα = 0 the light neutral Higgs boson S1 will
decouple from down-type fermions while the heavy neutral
Higgs boson S2 decouples from up-type fermions as can be
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Table 3. conditions for vanishing of the relative couplings in
the nonlinear SUSY SU(5) model and the MSSM

Condition nonlin. SUSY SU(5) MSSM
sin α = 0 ⇔ tan β 6= 1 ∧ 2

5λ2v2 = m2
Z + µ2 impossible

cos α = 0 ⇔ impossible impossible
sin(α − β) = 0 ⇔ tan β = 1 ∧ 2

5λ2v2 > m2
Z + µ2 impossible

cos(α − β) = 0 ⇔ (tan β = 1 ∧ 2
5λ2v2 < m2

Z + µ2) tan β = 1
∨(tan β 6= 1 ∧ 2

5λ2v2 = m2
Z)

seen from Table 1. If cos(α−β) = 0 the heavy Higgs boson
S2 decouples from gauge boson pairs, and the couplings of
S1 to one Higgs and one gauge boson vanish. Furthermore
cos(α − β) = 0 implies gS2S1S1 = 0.

These decouplings have great phenomenological rele-
vance due to a number of reasons. The first is that the
decay S1 → bb̄ is the dominant decay mode for suffi-
ciently light Higgs bosons in nearly all models and there-
fore the searches of Higgs bosons in experiments concen-
trates on this mode. The second reason concerns the pro-
duction mechanisms for the heavy neutral Higgs boson
S2. Among the most important processes are the Higgs-
Strahlung process for the production at e+e−-machines
and the W+W−-fusion mechanism for the production at
hadron colliders [16]. If S2 decouples from gauge boson
pairs, these production mechanisms are no longer avail-
able and the production and detection of the heavy neu-
tral CP-even Higgs boson S2 may be quite difficult.

5.2 Higgs decays

5.2.1 S1

The decay width of the neutral Higgs bosons in fermion
pairs is given by

Γ (Φ → ff̄) =
Ncg

2
2

32π
g2

Φff̄

m2
f

m2
W

mΦ

(
1 − 4

m2
f

m2
Φ

)p

, (19)

with p = 3
2 ( 1

2 ) for Φ = S1, S2(P ) and the relative couplings
from Table 1.

In the region where mS1 is near its upper bound de-
cays into one real and one virtual gauge boson become
important. If one assumes the fermions produced in the
decay of the virtual gauge boson to be massless and sums
over all possible fermions in the final state one gets the
decay width for this channel

Γ (S1 → V X) =

1+µV∫
2
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dx
g4
2

512π3 fV mS1
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x2 − 4µV
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with
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3
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160
9
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and µV = m2
V

m2
S1

, γV = Γ 2
V

m2
S1

being the scaled mass and

width of the gauge boson V .

5.2.2 S2

While S1 may not decay into real gauge boson pairs this
decay channel is open for S2 over a wide range of param-
eters. The decay width for this channel is

Γ (S2 → V V ) =
g2
2f

128π
cos2(α − β)

√
1 − xV

m3
S2

m2
W

·
[
1 − xV +

3
4
x2

V

]
(22)

with f = 1(2) for V = Z(W ) and xV = 4 m2
V

m2
S2

.

When kinematically allowed decays into pairs of neu-
tral Higgs bosons may also become important, the relevant
decay width is

Γ (S2 → ΦΦ) =
g2

S2ΦΦ

32π

1
mS2

√
1 − 4

m2
Φ

m2
S2

, (23)

with Φ = S1(P ) and the couplings from (17) and (18).
The decay S2 → ZP is kinematically impossible, but in

parts of the parameter space the decay S2 → Z∗P → ff̄P
is important. The decay width for this channel is given by

Γ (S2 → Z∗P → XP ) =

1+µP∫
2
√

µP

dx
g2
2g2

ZPS2

192π3 cos2 θW
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(
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20
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) 3
2
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with µP = m2
P

m2
S2

, µZ = m2
Z

m2
S2

and γZ = Γ 2
Z

m2
S2

.

5.2.3 P

The pseudoscalar Higgs boson P dominantly decays into
fermion pairs with the decay width given by (19). Since it
does not couple to gauge boson pairs the only remaining
relevant decay mode is the decay into S1Z which is sizable
in parts of the parameter space. The decay width for this
channel is given by

Γ (P → ZS1) =
g2
2

64π cos2 θW
cos2(β − α)

1
m3

P

λ
1
2 (m2

P , m2
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, (25)
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where

λ(a, b, c) = a2 + b2 + c2 − 2(ab + ac + bc). (26)

5.2.4 H+

In the case of the charged Higgs boson H+ the width for
the decay into two fermions reads

Γ (H+ → ud̄) =
3g2

2

32π

1
m2

W m3
H±

λ
1
2 (m2

H± , m2
u, m2

d)

· [(m2
d tan2 β + m2

u cot2 β)

· (m2
H± − m2

u − m2
d) − 4m2

um2
d

]
. (27)

If kinematically allowed the decay H+ → tb̄ is dom-
inant, but even well below the tb̄-threshold the decay
H+ → t∗b̄ in a virtual top-quark and a real b-quark has
significant branching ratio. The decay width for this three-
body decay is given by

Γ (H+ → W+bb̄) =
1−µW∫
0

dx
Ncg

4
2 cot2 β

2048π3

m4
t

m4
W

mH±
1

(1 − µt − x)2 + µtγt

· (1 − µW − x)x
(1 − x)2

[
(1 − x)2 + µW (1 − x) − 2µ2

W

]
, (28)

with µt = m2
t

m2
H+

, γt = Γ 2
t

m2
H+

, µW = m2
W

m2
H+

and γW = Γ 2
W

m2
H+

.

Besides the fermionic decay channels, decays into one
Higgs and one gauge boson are important. Of these only
the decay H+ → W+S1 is allowed by kinematics, the
decay width being

Γ (H+ → W+S1) =
g2
2

64π
cos2(β − α)

1
m3

H+

λ
1
2 (m2

H± , m2
W , m2

S1
)

·
[
m2

W − 2(m2
H± + m2

S1
) +

1
m2

W

(m2
H± − m2

S1
)2
]

.(29)

While the decays H+ → W+S2 and H+ → W+P
are kinematically not allowed the corresponding processes
with a virtual W+ boson become relevant in parts of the
parameter space. The decay widths for these channels are
given by

Γ (H+ → W+∗
Φ → XΦ) =

1+µΦ∫
2
√

µΦ

dx
9g4

2g2
W ±H±Φ

256π3 mH+

·
(
x2 − 4µΦ

) 3
2

(1 + µΦ − µW − x)2 + µW γW
, (30)

where µΦ = m2
Φ

m2
H+

for Φ = S2 or P and the normalized

couplings gW ±H±Φ from Table 2.

5.2.5 Discussion of results

We now come to the discussion of the decay pattern of
the Higgs bosons. In general the Higgs bosons will dom-
inantly decay into the heaviest particles allowed by kine-
matics. Three body decays involving virtual gauge bosons
will normally not have branching ratios above a few per-
cent unless close to the threshold for production of real
gauge bosons. This general pattern is well known from
the MSSM [17] but in our model there are further com-
plications due to the above mentioned decouplings in the
Higgs sector. We will first neglect these decouplings in our
discussion of the decay pattern and then investigate the
effects of the decouplings on the decay pattern separately.

As in the MSSM the decay pattern of the lightest neu-
tral Higgs boson S1 is quite simple. It dominantly decays
into b-quark pairs with decays into c’s and τ ’s contributing
about 5-10% each (Fig. 11). Only for values of λ above 0.7
three-body decays into gauge bosons may have branching
ratios in the percent range (Fig. 15).

As already discussed the couplings of S1 are standard-
model-like in the region m & 200 GeV and the fermionic
couplings of S2 approach those of P , therefore depend-
ing nearly exclusively on tanβ. Because the masses of the
heavy Higgs bosons S2,P and H± nearly exclusively de-
pend on m in this region, the decay pattern of these parti-
cles is approximately independent of λ. Of course this does
not take into account the decoupling effects in the Higgs
gauge boson couplings, but since these couplings only de-
pend on λ they can be investigated separately. Further-
more the Higgs couplings to gauge bosons are suppressed
by cos(α − β) and therefore decays to gauge bosons are
not among the dominant decay modes.

The dependence of the decay widths and branching
ratios on the parameter m and therefore on the Higgs
boson masses can be seen from Figs. 10 and 11 which
nearly reproduce the decay pattern of the MSSM. It can be
seen from these figures that decays containing a S2 or P in
the final state are not relevant for values of m & 100 GeV.
These are the decays S2 → PP , S2 → ZP , H+ → W+S2
and H+ → W+P . In fact the only region of the parameter
space where these modes become relevant is for very small
values of m and tanβ near 1 (Fig. 14).

The case of large tanβ is not shown, but as in the
MSSM decays into tt̄ lose significance while the bb̄ decay
channel will eventually become the dominant one for suf-
ficiently high tanβ. One has to note though that a large
value of tanβ implies a large m in our model.

We now come to the discussion of the decouplings
in the Higgs sector. The decoupling from gauge bosons,
which happens for a fixed value of λ ∼ 0.59 given by
2
5λ2v2 = m2

Z is illustrated in Fig. 15. The value of m is
chosen so that decays into top quark pairs are not possi-
ble. The impact of the decoupling on the absolute decay
width is negligible except for S2, where not only the de-
cays into gauge bosons but also decays into the light Higgs
boson S1 are affected by the decoupling.

The decoupling involving fermions which happens for
sinα = 0 is illustrated in Fig. 14. The most significant
change of the decay pattern happens in the case of the
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Fig. 11a–d. Branching ratios of Higgs bosons for λ = 0 and
tan β = 2

light neutral Higgs boson S1, where the dominant decay
mode S1 → bb̄ vanishes due to the decoupling. Instead
this mode is replaced by the cc̄ channel. It is therefore
important for experimental searches not only to search for
Higgs bosons in the bb̄ but also in the cc̄ decay channel.

5.2.6 Radiative corrections to Γ (S2 → S1S1)

Although we have shown that the characteristic decou-
plings of Higgs bosons in this model are phenomenolog-
ically important, our analyzes so far only considered the
tree-level couplings. But even if the tree-level couplings
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vanish, radiative corrections may become important and
should be taken into account.

In order to estimate the effect of the radiative cor-
rections on the decoupling we investigated the process
S2 → S1S1. Because only scalar particles are involved this
is the simplest process affected by the decouplings. Fur-
thermore we are only interested in a qualitative discussion
of the effects of the one-loop corrections and therefore we
did not perform a complete one-loop calculation. Instead
we only took the S2S1S1-vertex into account, and here
we restricted us to top- and bottom-quarks in the loop.
However we did not take into account radiative correc-
tions to particle masses, or any other parameters of the
theory. Comparison of our results in the case of λ = 0
with a complete one-loop calculation for the decay width
Γ (S2 → S1S1) in the MSSM [19] shows that our approach
gives the right qualitative behavior.

The fermion-loop contribution to the S2S1S1-coupling
is given by

iΓ
(1)
S2S1S1

= (−1)µ4−D

∫
dDk

(2π)D
Tr

[
i(6 k + mf )
k2 − m2

f

igS2ff
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, (31)

with the naming conventions for the momenta as shown
in Fig. 16.

If one performs the D-dimensional integration and sets
all external momenta on-shell, the result for the fermion-
loop contribution reads

iΓ
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, (32)

where B0 and C0 are the scalar 2- and 3-point integrals
introduced by t’Hooft and Veltman [18] which are defined
by

i
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Fig. 15a–d. Branching ratios of Higgs bosons for tan β = 2
and m = 240GeV

Fig. 16. One-loop contribution to S2S1S1-vertex (arrows on
scalar lines indicate direction of momentum)

The full one-loop corrected on-shell S2S1S1-vertex is
then given by

iΓS2S1S1 |on-shell = igS2S1S1 + 2iΓ
(1)
S2S1S1

∣∣∣
on-shell

. (37)

In Fig. 18 the results for the decay width Γ (S2 →
S1S1) are shown in the tanβ-λ-plane for m = 400 GeV
and Fig. 17 shows the dependence of the decay width on
λ alone for a constant value tanβ = 2. While the position
of the zero in the decay width is independent of tanβ
in the tree level result this is not the case anymore with
the radiatively corrected result. Instead the position of
the zero gets shifted to smaller values of λ and eventually
reaches λ = 0 for tanβ ∼ 1.4. This is the same behavior
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Fig. 18. Tree-level and 1-loop corrected decay width Γ (S2 →
S1S1) for m = 400GeV

as in the MSSM where radiative corrections can also lead
to a vanishing decay width of this channel [19]. Therefore
even when radiative corrections are taken into account
there still is a decoupling in the S2S1S1-coupling though
at other values of the parameters.

6 Conclusion

Using the one-loop effective potential we have estimated
radiative corrections to the tree level Higgs boson masses
we determined in a previous paper [10]. As expected the
correction is significant and it may become as much as
50 GeV. In contrast to the masses the radiative corrections
to the experimental lower limits of mS1 on tree level [10]
for LEP1,2 and future e+e−-colliders are not significant,
smaller than 5%.

Finally we have investigated the decays of the Higgs
bosons in our model. The general pattern is similar to
that of the MSSM. So we have emphasized those aspects
of our model which differ from MSSM. One such aspect
is a certain decoupling phenomenon. We have showed in
the case of S2 → S1S1 that the decoupling exists still at
one-loop level.
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